Open Access


Read more
image01

Online Manuscript Submission


Read more
image01

Submitted Manuscript Trail


Read more
image01

Online Payment


Read more
image01

Online Subscription


Read more
image01

Email Alert



Read more
image01

Original Research Article | OPEN ACCESS

Synthesis and characterisation of doxorubicin-loaded functionalised cobalt ferrite nanoparticles and their in vitro anti-tumour activity under an AC-magnetic field

Muhammad Waheed Mushtaq1,2 , Farah Kanwal2, Atif Islam3, Khalil Ahmed2, Zia-ul-Haq 2, Tahir Jamil3, Muhammad Imran2, Syed Mustansar Abbas4, Qingrong Huang1

1Food Science Department, Rutgers, The State University of New Jersey 08901, USA; 2Institute of Chemistry; 3Department of Polymer Engineering and Technology, University of the Punjab, Lahore-54590, Pakistan; 4Department of Energy and Materials Engineering, Dongguk University, 30, Pildong-ro, 1-gil, Jung-gu, Seoul 100-715, Republic of Korea.

For correspondence:-  Muhammad Mushtaq   Email: waheedjaami@gmail.com   Tel:+923045578484

Received: 22 November 2016        Accepted: 5 June 2017        Published: 31 July 2017

Citation: Mushtaq MW, Kanwal F, Islam A, Ahmed K, Z, Jamil T, et al. Synthesis and characterisation of doxorubicin-loaded functionalised cobalt ferrite nanoparticles and their in vitro anti-tumour activity under an AC-magnetic field. Trop J Pharm Res 2017; 16(7):1663-1674 doi: 10.4314/tjpr.v16i7.27

© 2017 The authors.
This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited..

Abstract

Purpose: To synthesise and evaluate the anti-tumour properties of doxorubicin-loaded xanthan gum-functionalised cobalt ferrite nanoparticles (CoFe2O4.NPs@XG-Doxo) under an AC-magnetic field.
Methods: Multidimensional magnetic cobalt ferrite (CoFe2O4) nanoparticles (NPs) were synthesised by a co-precipitation method. The synthesised cobalt ferrite nanoparticles (CFNPs) were functionalised with xanthine gum (XG) and subsequently characterised by Fourier transform-infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA) and contact angle studies. Vibrating sample magnetometry (VSM) was used for magnetic measurements of the native and XG-coated CFNPs. The microstructural morphology of the uncoated and XG-coated CFNPs was established using scanning electron microscopy (SEM), atomic force microscopy (AFM) and dynamic light scattering (DLS) studies. Finally, the doxorubicin release profile of the drug-loaded functionalised CFNPs was evaluated using an oscillating magnetic field (OMF) apparatus in the presence of an externally applied magnetic field.
Results: XG coating decreased the contact angle of the native CFNPs from 92° to 40°, which indicates that it modified the CFNP surface from hydrophobic to hydrophilic. VSM analysis demonstrated that CoFe2O4.NPs@XG also retained the magnetic characteristics of the bare cobalt ferrite nanocrystals, endorsing its application as a promising magnetic nanovector (MNV). The synthesised CoFe2O4.NPs@XG-Doxo exhibited significantly higher controlled discharge of doxorubicin at acidic pH (5.0) than at neutral pH (7.4). In vitro analysis revealed the remarkable lower systematic toxicity of XG-coated CoFe2O4.NPs compared with uncoated CFNPs against Chinese hamster ovary (CHO) and Huh7 cell lines.
Conclusion: These results indicate that XG-coated CFNPs are a biocompatible MNV for doxorubicin.

Keywords: Cobalt ferrite, Cytotoxicity, Drug delivery, Nanoparticles, Xanthan gum

Impact Factor
Thompson Reuters (ISI): 0.523 (2021)
H-5 index (Google Scholar): 39 (2021)

Article Tools

Share this article with



Article status: Free
Fulltext in PDF
Similar articles in Google
Similar article in this Journal:

Archives

2024; 23: 
1,   2,   3,   4
2023; 22: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2022; 21: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2021; 20: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2020; 19: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2019; 18: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2018; 17: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2017; 16: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2016; 15: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2015; 14: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2014; 13: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2013; 12: 
1,   2,   3,   4,   5,   6
2012; 11: 
1,   2,   3,   4,   5,   6
2011; 10: 
1,   2,   3,   4,   5,   6
2010; 9: 
1,   2,   3,   4,   5,   6
2009; 8: 
1,   2,   3,   4,   5,   6
2008; 7: 
1,   2,   3,   4
2007; 6: 
1,   2,   3,   4
2006; 5: 
1,   2
2005; 4: 
1,   2
2004; 3: 
1
2003; 2: 
1,   2
2002; 1: 
1,   2

News Updates